Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.740
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1367385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628550

RESUMO

Introduction: Neonatal calf diarrhea (NCD) is one of the most common diseases in calves, causing huge economic and productivity losses to the bovine industry worldwide. The main pathogens include bovine rotavirus (BRV), bovine coronavirus (BCoV), and Enterotoxigenic Escherichia coli (ETEC) K99. Since multiple infectious agents can be involved in calf diarrhea, detecting each causative agent by traditional methods is laborious and expensive. Methods: In this study, we developed a one-step multiplex Real-Time PCR assay to simultaneously detect BRV, BCoV, and E. coli K99+. The assay performance on field samples was evaluated on 1100 rectal swabs of diseased cattle with diarrhea symptoms and compared with the conventional gel-based RT-PCR assay detect BRV, BCoV, and E. coli K99+. Results: The established assay could specifically detect the target pathogens without cross-reactivity with other pathogens. A single real-time PCR can detect ~1 copy/µL for each pathogen, and multiplex real-time PCR has a detection limit of 10 copies/µL. Reproducibility as measured by standard deviation and coefficient of variation were desirable. The triple real-time PCR method established in this study was compared with gel-based PT-PCR. Both methods are reasonably consistent, while the real-time PCR assay was more sensitive and could rapidly distinguish these three pathogens in one tube. Analysis of surveillance data showed that BRV and BCoV are major enteric viral pathogens accounting for calves' diarrhea in China. Discussion: The established assay has excellent specificity and sensitivity and was suitable for clinical application. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications and calf diarrhea research. ​.


Assuntos
Doenças dos Bovinos , Escherichia coli Enterotoxigênica , Rotavirus , Animais , Bovinos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Diarreia/diagnóstico , Diarreia/veterinária , Rotavirus/genética , Doenças dos Bovinos/diagnóstico , Fezes
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612450

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Assuntos
Anticorpos Biespecíficos , Escherichia coli Enterotoxigênica , Imunoglobulinas , Anticorpos de Cadeia Única , Animais , Suínos , Anticorpos de Cadeia Única/farmacologia , Galinhas , Diarreia/veterinária
3.
Adv Exp Med Biol ; 1446: 39-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625524

RESUMO

The nutritional health of dogs and cats is important to pet owners around the world. Nutrition is inextricably linked to the health of the gastrointestinal system and vice versa. Gastrointestinal signs, such as vomiting, diarrhea, anorexia, or weight loss, are one of the most common reasons that dog and cat owners make non-routine appointments with veterinarians. Those patients are evaluated systematically to identify and/or rule out the causes of the symptoms. Some causes of chronic diarrhea are within the gastrointestinal tract while others are secondary to pathogenic factors outside the digestive system. Some useful biomarkers of chronic intestinal disease (enteropathy) exist in serum and feces. After determination that the clinical signs are due to primary gastrointestinal disease and that there is no parasitism, specific diets are used for at least two weeks. There are several types of diets for pets with chronic enteropathies. There are limited ingredient diets and hydrolyzed protein diets with reduced levels of allergens. There are also highly digestible and fiber-enhanced diets. Some diets contain probiotics and/or prebiotics. If symptoms do not improve and the patient is stable, a diet from a different class may be tried. For chronic enteropathies, the prognosis is generally good for symptom resolution or at least improvement. However, if interventions with novel diets do not ameliorate the symptoms of chronic enteropathy, then antibiotic, anti-inflammatory, or immunosuppressant therapy or further, more invasive diagnostics such as taking an intestinal biopsy, may be indicated. Pancreatitis is a common gastrointestinal disease in dogs and cats and patients may present with mild to severe disease. Many patients with mild to moderate disease can be successfully treated with early supportive care, including feeding a low-fat diet. A novel pharmaceutical, fuzapladib (Panoquell-CA1) looks very promising for treating more severe forms of acute pancreatitis in dogs. Maintenance on a low-fat diet may prevent pancreatitis in at-risk dogs. Future advances in medicine will allow pet owners and veterinarians to use dietary management to maximize the health of their dogs and cats.


Assuntos
Doenças do Gato , Doenças do Cão , Gastroenteropatias , Doenças Inflamatórias Intestinais , Pancreatite , Gatos , Cães , Humanos , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/terapia , Doença Aguda , Doenças do Cão/diagnóstico , Doenças do Cão/terapia , Dieta , Gastroenteropatias/diagnóstico , Gastroenteropatias/terapia , Gastroenteropatias/veterinária , Diarreia/diagnóstico , Diarreia/terapia , Diarreia/veterinária
4.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595949

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Doenças dos Roedores , Doenças dos Suínos , Animais , Suínos , Camundongos , Enterotoxinas , Vacinas Combinadas , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária , Diarreia/microbiologia , Proteínas de Escherichia coli/genética , Vacinas de Produtos Inativados , Anticorpos Antibacterianos , Doenças dos Suínos/microbiologia
5.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570774

RESUMO

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/genética , Quercetina/farmacologia , Quercetina/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Doenças dos Suínos/tratamento farmacológico
6.
BMC Vet Res ; 20(1): 151, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643127

RESUMO

BACKGROUND: Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS: Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS: These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.


Assuntos
Infecções Bacterianas , Enterococcus faecium , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Coelhos , Animais , Enterococcus faecium/fisiologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções Bacterianas/veterinária , Imunidade
7.
Mol Biol Rep ; 51(1): 494, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581525

RESUMO

BACKGROUND: Escherichia coli (E. coli) serves as a common indicator of gut microbiota and is utilized for monitoring antimicrobial resistance determinants in food-producing animals. This study aimed to investigate antimicrobial resistance patterns in virulence gene-positive E. coli isolates obtained from 340 healthy and diarrheic calves. METHODS AND RESULTS: A total of 340 fecal swab samples were obtained from diarrheic (n = 170) and healthy (n = 170) calves for 12 months from different farms in Kerman, Iran. The samples were phenotypically analyzed to detect E. coli isolates and antibiotic resistance. Also, antimicrobial resistance genes, diarrheagenic E. coli pathotypes, and phylogenetic background were screened by PCR. Fifteen percent (51/340) of E. coli isolates were positive for at least one of the examined virulence genes (VGs); the prevalence of VGs in E. coli isolates from healthy calves (36/170; 21.17%) was higher than that in diarrheic cases (15/170; 8.82%). Out of the 51 VG-positive isolates, six pathotypes including Shiga toxin-producing E. coli (STEC; 27.45%), enterotoxigenic E. coli (ETEC; 23.52%), enterohemorrhagic E. coli (EHEC; 19.6%), necrotoxigenic E. coli (NTEC; 19.6%), enteropathogenic E. coli (EPEC; 15.68%), enteroinvasive E. coli (EIEC; 1.96%) and three hybrid pathotypes including ETEC/STEC, ETEC/EHEC, and STEC/EIEC were detected among the strains. Antimicrobial resistance (AR) was observed in 98.03% of the VG-positive isolates, which was the same for both healthy and diarrheic calves. The maximum prevalence rate of AR was found against trimethoprim/sulfamethoxazole (49.01%; 3/51), while the minimum prevalence rate was against gentamycin (5.88%; 25/51). Among the VG-positives, phylotype A was found to be the most prevalent followed by B1 and D phylotypes. CONCLUSIONS: The prevalence of VG-positive E. coli isolates was higher in healthy calves compared to diarrheic cases. AR was widespread among VG-positive isolates. These findings suggest that calves may serve as potential reservoirs of antimicrobial-resistant hybrid pathotypes of E. coli.


Assuntos
Anti-Infecciosos , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Humanos , Animais , Bovinos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Irã (Geográfico)/epidemiologia , Filogenia , Resistência Microbiana a Medicamentos , Diarreia/epidemiologia , Diarreia/veterinária
8.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575861

RESUMO

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Assuntos
Doenças dos Bovinos , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Probióticos , Infecções por Rotavirus , Rotavirus , Animais , Bovinos , Rotavirus/genética , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/veterinária , Microbioma Gastrointestinal/genética , Disbiose , Diarreia/tratamento farmacológico , Diarreia/veterinária , Fezes/microbiologia , Probióticos/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia
9.
Can Vet J ; 65(3): 259-266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434158

RESUMO

Objectives: To evaluate the effects of a cell-free supernatant from Lactococcus lactis (CFSM) on performance and diarrhearelated parameters and the presence of F4+ enterotoxigenic E. coli (ETEC) in piglets during post-weaning, and to evaluate the in vitro effect of the CFSM on faeG gene expression in an E. coli F4+. Animals and procedure: In 3 trials with 90 piglets per trial, pigs were assigned to receive a placebo or 1 of 2 CFSM treatments and observed for diarrhea and performance. Fecal swabs were taken to determine the presence of ETEC. Quantitative RT-PCR was used to assess faeG gene expression in E. coli 21259 after treatment with CFSM at 50 mg/mL. Results: The CFSM administered for 14 d at a dose of 24 mg/kg BW (2X) reduced diarrhea-related parameters compared to the placebo. Quantitative RT-PCR showed that, in E. coli 21259 treated with CFSM at 50 mg/mL, expression of the faeG gene was significantly repressed (P < 0.0001) relative to that in the untreated control. Conclusion: The evaluated CFSM reduced the frequency and prevalence of diarrhea in a field situation. The in vitro treatment had an inhibitory effect on the expression of the faeG gene in F4+ E. coli 21259.


Effet d'un surnageant de culture de Lactococcus lactis sur la diarrhée et les paramètres de performance des porcelets en période post-sevrage et sur l'expression du gène faeG in vitro. Objectifs: Évaluer les effets d'un surnageant acellulaire de Lactococcus lactis (CFSM) sur les paramètres de performance et de diarrhée et la présence d'E. coli entérotoxinogène F4+ (ETEC) chez les porcelets en post-sevrage, et évaluer l'effet in vitro du CFSM sur l'expression du gène faeG dans un E. coli F4+. Animaux et procédure: Dans 3 essais portant sur 90 porcelets par essai, les porcs ont reçu un placebo ou 1 des 2 traitements CFSM et ont été observés pour détecter la diarrhée et leurs performances. Des prélèvements fécaux ont été effectués pour déterminer la présence d'ETEC. La RT-PCR quantitative a été utilisée pour évaluer l'expression du gène faeG dans E. coli 21259 après traitement avec CFSM à 50 mg/mL. Résultats: Le CFSM administré pendant 14 jours à une dose de 24 mg/kg de poids corporel (2X) a réduit les paramètres liés à la diarrhée par rapport au placebo. La RT-PCR quantitative a montré que, chez E. coli 21259 traité avec CFSM à 50 mg/mL, l'expression du gène faeG était significativement réprimée (P < 0,0001) par rapport à celle du témoin non traité. Conclusion: Le CFSM évalué a réduit la fréquence et la prévalence de la diarrhée sur le terrain. Le traitement in vitro a eu un effet inhibiteur sur l'expression du gène faeG chez F4+ E. coli 21259.(Traduit par Dr Serge Messier).


Assuntos
Lactococcus lactis , Animais , Suínos , Lactococcus lactis/genética , Escherichia coli , Diarreia/prevenção & controle , Diarreia/veterinária , Manejo de Espécimes/veterinária
10.
Vet J ; 304: 106097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479492

RESUMO

Vaccination is the most effective means of preventing and controlling porcine epidemic diarrhea (PED). Conventional vaccines developed from porcine epidemic diarrhea virus (PEDV) GI-a subtypes (CV777 and SM98) have played a vital role in preventing classical PED. However, with the emergence of PEDV mutants in 2010, conventional PEDV GI-a subtype-targeting vaccines no longer provide adequate protection against PEDV GII mutants, thereby making novel-type PED vaccine development an urgent concern to be addressed. Novel vaccines, including nucleic acid vaccines, genetically engineered subunit vaccines, and live vector vaccines, are associated with several advantages, such as high safety and stability, clear targeting, high yield, low cost, and convenient usage. These vaccines can be combined with corresponding ELISA kits to differentiate infected from vaccinated animals, which is beneficial for disease confirmation. This review provides a detailed overview of the recent advancements in PED vaccines, emphasizing on the research and application evaluation of novel PED vaccines. It also considers the future directions and challenges in advancing these vaccines to widespread use in clinics.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vacinas Atenuadas , Diarreia/prevenção & controle , Diarreia/veterinária
11.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542173

RESUMO

This study aimed to investigate the effects of fermented corn-soybean meal mixed feed (FMF) on growth performance, intestinal barrier function, gut microbiota and short-chain fatty acids in weaned piglets. A total of 128 weaned piglets [Duroc×(Landrace×Yorkshire), male, 21-day-old] were randomly allocated to four groups. Piglets were fed a control diet (CON) or the control diet supplemented with 10%, 50% or 100% FMF (FMF-10, FMF-50 or FMF-100, respectively) for 14 d. The results showed that the FMF-100 group had higher average daily gain and average daily feed intake and lower diarrhea incidence than the CON group (p < 0.05). The FMF-50 and FMF-100 groups had greater villus height in the duodenum and jejunum, and the FMF-10 and FMF-100 groups had higher villus height-to-crypt depth ratio in the duodenum and jejunum than the CON group. Additionally, the FMF-100 group had higher protein expression of duodenal, jejunal and ileal ZO-1 and jejunal claudin-1; higher mRNA expression of duodenal and ileal TJP1 and jejunal CLDN1 and IL10; and lower jejunal IL1B mRNA expression (p < 0.05). The FMF-50 group showed higher jejunal ZO-1 and claudin-1 protein levels, higher mRNA expression levels of IL10 and TJP1 and lower levels of TNF in the jejunum; the FMF-10 group had higher mRNA expression levels of IL10 and lower levels of TNF in the jejunum than the CON group (p < 0.05). Furthermore, the FMF-10 and FMF-50 groups had higher colonic Lactobacillus abundance and butyrate levels; the FMF-100 group had higher abundance of colonic butyrate, Lactobacillus and Faecalibacterium than the CON group (p < 0.05). Collectively, our results suggest that FMF could improve intestinal mucosal barrier function, gut microbiota and their metabolites, thereby enhancing average daily gain and reducing diarrhea incidence in weaned piglets.


Assuntos
Microbioma Gastrointestinal , Zea mays , Suínos , Animais , Masculino , Interleucina-10 , 60435 , Soja , Claudina-1 , Farinha , Incidência , Suplementos Nutricionais , Diarreia/prevenção & controle , Diarreia/veterinária , RNA Mensageiro , Butiratos
12.
Prev Vet Med ; 226: 106162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518658

RESUMO

Tritrichomonas foetus (T. foetus) is a protozoal pathogen that infects cats and constitutes a significant cause of chronic colitis and diarrhea. Perturbations in the gut microbiota (GM) are affected by Trichomonas infection. Furthermore, dysregulation of the host GM enhances Trichomonas pathogenicity. However, it remains unclear whether the occurrence of diarrhea is associated with a dysregulation in GM following T. foetus infection in cats. Hence, the primary objective of this investigation was to explore the correlation between T. foetus infection and dysregulation in GM by analyzing fecal samples obtained from pet cats in Henan Province, central China. We randomly collected 898 fecal samples from pet cats living in 11 prefectural cities within Henan Province, and T. foetus was screened with polymerase chain reaction (PCR) amplification based on the 18 S rRNA gene. Subsequently, six T. foetus-positive and six T. foetus-negative samples underwent analysis through 16 S rRNA gene sequencing to evaluate the gut microbiota's composition. The overall prevalence of T. foetus infection among the collected samples was found to be 6.01% (54/898). Notably, a higher prevalence of infection was observed in young, undewormed, unimmunized, and diarrheic pet cats. T. foetus infection was found to significantly alter the composition of the pet cat fecal microbiota, leading to dysfunctions. Moreover, it resulted in a substantial increase in the abundance of Bacteroidetes, Proteobacteria, and Phascolarctobacterium spp., while decreasing the ratio of Firmicutes to Bacteroidetes (F/B) and the abundance of Actinobacteria, Clostridiaceae_Clostridium spp., Phascolarctobacterium spp., SMB53 spp., and Blautia spp. We constructed ROC curves to assess the diagnostic value of specific bacterial taxa in discriminating T. foetus infection. The analysis revealed that Proteobacteria and Clostridiaceae_Clostridium spp. were the most reliable single predictors for T. foetus infection. This finding suggests that alterations in the GM may be strongly associated with T. foetus infections.


Assuntos
Doenças do Gato , Microbioma Gastrointestinal , Infecções Protozoárias em Animais , Tritrichomonas foetus , Gatos , Animais , Infecções Protozoárias em Animais/epidemiologia , Prevalência , Diarreia/epidemiologia , Diarreia/veterinária , Fezes , Fatores de Risco , Doenças do Gato/epidemiologia
13.
Front Cell Infect Microbiol ; 14: 1305742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481663

RESUMO

Introduction: Acute haemorrhagic diarrhoea syndrome (AHDS) in dogs is a condition of unknown aetiology. Providencia alcalifaciens is suspected to play a role in the disease as it was commonly found in dogs suffering from AHDS during a Norwegian outbreak in 2019. The role of this bacterium as a constituent of the canine gut microbiota is unknown, hence this study set out to investigate its occurrence in healthy dogs using metagenomics. Materials and methods: To decrease the likelihood of false detection, we established a metagenomic threshold for P. alcalifaciens by spiking culture-negative stool samples with a range of bacterial dilutions and analysing these by qPCR and shotgun metagenomics. The detection limit for P. alcalifaciens was determined and used to establish a metagenomic threshold. The threshold was validated on naturally contaminated faecal samples with known cultivation status for P. alcalifaciens. Finally, the metagenomic threshold was used to determine the occurrence of P. alcalifaciens in shotgun metagenomic datasets from canine faecal samples (n=362) collected in the HUNT One Health project. Results: The metagenomic assay and qPCR had a detection limit of 1.1x103 CFU P. alcalifaciens per faecal sample, which corresponded to a Cq value of 31.4 and 569 unique k-mer counts by shotgun metagenomics. Applying this metagenomic threshold to 362 faecal metagenomic datasets from healthy dogs, P. alcalifaciens was found in only 1.1% (95% CI [0.0, 6.8]) of the samples, and then in low relative abundances (median: 0.04%; range: 0.00 to 0.81%). The sensitivity of the qPCR and shotgun metagenomics assay was low, as only 40% of culture-positive samples were also positive by qPCR and metagenomics. Discussion: Using our detection limit, the occurrence of P. alcalifaciens in faecal samples from healthy dogs was low. Given the low sensitivity of the metagenomic assay, these results do not rule out a significantly higher occurrence of this bacterium at a lower abundance.


Assuntos
Diarreia , Metagenoma , Cães , Animais , Diarreia/diagnóstico , Diarreia/veterinária , Diarreia/epidemiologia , Fezes/microbiologia , Providencia/genética , Bactérias/genética , Metagenômica/métodos
14.
J Vet Diagn Invest ; 36(2): 222-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429686

RESUMO

Since being reported in 1979 and 2006, indirect fluorescent antibody (IFA) tests have not been reported to detect bovine viral diarrhea virus (BVDV) antibodies to our knowledge. Thus, we re-evaluated the efficacy and usefulness of IFA tests for BVDV serology. We tested 4 combinations of 2 antibody conjugates (fluorescein isothiocyanate [FITC]-conjugated rabbit IgG anti-bovine IgG; rabbit IgG F(ab')2 fragment anti-bovine IgG [F(ab')2 FITC-IgG]) and 2 washing solutions (PBS; carbonate-bicarbonate-buffered saline [CBBS]) to evaluate the specificity of an IFA test for BVDV. We compared the sensitivity of the optimal combination with virus neutralization (VN) tests and an ELISA, and compared IFA with VN titers against different genotype (subgenotype) strains. For the F(ab')2 FITC-IgG/CBBS combination, only 1 of the 156 (0.6%) 4-fold diluted cattle sera resulted in a nonspecific reaction; other combinations led to a much higher incidence (22.9-37.2%). For the F(ab')2 FITC-IgG/CBBS combination, IFA detection rates were identical (36 of 59) for BVDV1 and BVDV2 genotypes, and IFA titers against them were strongly correlated (r = 0.99). The antibody-detection rates of the IFA tests were almost identical to those of VN tests and the ELISA (κ: 0.96 and 0.89, respectively). The IFA titers against 4 strains (BVDV1a, BVDV1j, BVDV2a, and an unidentified strain) were similar, 1,024 to ≥4,096, although the VN titers were different. Thus, our IFA tests were specific and sensitive, and more useful than VN tests given that the IFA tests could evaluate the immune status of cattle using a representative strain, regardless of genotype (subgenotype).


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Bovinos , Animais , Coelhos , Fluoresceína-5-Isotiocianato , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/genética , Anticorpos Antivirais , Imunoglobulina G , Diarreia/veterinária , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico
15.
Pol J Vet Sci ; 27(1): 143-146, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511679

RESUMO

Porcine epidemic diarrhea (PED) is a disease extremely harmful to pig health. Intramuscular and Houhai acupoint injections are the main immunization routes to prevent and control PED. This study aimed to evaluate the efficacy of these two routes in pregnant sows based on serum IgG, IgA, and neutralizing antibody levels. PED virus (PEDV) immunoprophylaxis with live-attenuated and inactivated vaccines was administered. The vaccinations for the intramuscular injections elevated IgG and neutralizing antibody levels more than Houhai acupoint injections at most timepoints after immunization. However, the anti-PEDV IgA antibodies induced by vaccination with the two immunization routes did not differ significantly. In conclusion, intramuscular injections are better than Houhai acupoint injections for PEDV vaccination of pregnant sows.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Gravidez , Suínos , Animais , Feminino , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Imunização/veterinária , Anticorpos Neutralizantes , Vacinação/veterinária , Diarreia/veterinária , Imunoglobulina G , Imunoglobulina A
16.
Vet Res ; 55(1): 27, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443986

RESUMO

Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. Mitophagy plays important roles in virus-host interactions. Here, we provide evidence that non-cytopathic (NCP) BVDV shifts the balance of mitochondrial dynamics toward fission and induces mitophagy to inhibit innate immune responses. Mechanistically, NCP BVDV triggers the translocation of dynamin-related protein (Drp1) to mitochondria and stimulates its phosphorylation at Ser616, leading to mitochondrial fission. In parallel, NCP BVDV-induced complete mitophagy via Parkin-dependent pathway contributes to eliminating damaged mitochondria to inhibit MAVS- and mtDNA-cGAS-mediated innate immunity responses, mtROS-mediated inflammatory responses and apoptosis initiation. Importantly, we demonstrate that the LIR motif of ERNS is essential for mitophagy induction. In conclusion, this study is the first to show that NCP BVDV-induced mitophagy plays a central role in promoting cell survival and inhibiting innate immune responses in vitro.


Assuntos
Vírus da Diarreia Viral Bovina , Mitofagia , Animais , Apoptose , Imunidade Inata , Diarreia/veterinária
17.
Microbiol Spectr ; 12(4): e0398823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451226

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major pathogens contributing to piglet diarrhea, with significant implications for both piglet health and the economic aspects of the livestock industry. SW207 is an isolate of Bacillus halotolerans isolated from the cold- and disease-resistant Leixiang pigs in Northeastern China. We have discovered that SW207 can survive in the pig's gastrointestinal fluid and under conditions of high bile salt concentration, displaying potent antagonistic activity against ETEC. In this study, we established a weaned piglet diarrhea model infected with ETEC to investigate the role of SW207 in preventing diarrhea and improving intestinal health. Results indicate that SW207 upregulates the expression of tight junction proteins, including claudin-1, occludin, and zonula occludens-1, at both the transcriptional and translational levels. Furthermore, SW207 reduces serum endotoxin, D-lactic acid, and various oxidative stress markers while enhancing piglet mechanical barrier function. In terms of immune barrier, SW207 suppressed the activation of the TLR4/MyD88/NF-κB pathway, reducing the expression of various inflammatory factors and upregulating the expression of small intestine mucosal sIgA. Concerning the biological barrier, SW207 significantly reduces the content of E. coli in the intestines and promotes the abundance of beneficial bacteria, thereby mitigating the microbiota imbalance caused by ETEC. In summary, SW207 has the potential to prevent weaned piglet diarrhea caused by ETEC, alleviate intestinal inflammation and epithelial damage, and facilitate potential beneficial changes in the intestinal microbiota. This contributes to elucidating the potential mechanisms of host-microbe interactions in preventing pathogen infections.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC) has consistently been one of the significant pathogens causing mortality in weaned piglets in pig farming. The industry has traditionally relied on antibiotic administration to control ETEC-induced diarrhea. However, the overuse of antibiotics has led to the emergence of drug-resistant zoonotic bacterial pathogens, posing a threat to public health. Therefore, there is an urgent need to identify alternatives to control pathogens and reduce antibiotic usage. In this study, we assessed the protective effect of a novel probiotic in a weaned piglet model infected with ETEC and analyzed its mechanisms both in vivo and in vitro. The study results provide theoretical support and reference for implementing interventions in the gut microbiota to alleviate early weaned piglet diarrhea and improve intestinal health.


Assuntos
Bacillus , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Doenças dos Suínos , Animais , Suínos , Escherichia coli Enterotoxigênica/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Intestinos/microbiologia , Mucosa Intestinal/microbiologia , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Antibacterianos/farmacologia , Bactérias/metabolismo , Doenças dos Suínos/microbiologia
18.
Arch Virol ; 169(4): 82, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520595

RESUMO

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) cause intestinal diseases with similar manifestations in suckling piglets. In this study, we developed a multiplex real-time PCR for differential diagnosis of PEDV, PDCoV, and SADS-CoV. The assay demonstrated high specificity with a detection limit of 5 copies/µl for each virus. The assay specifically detected PEDV, PDCoV, and SADS-CoV and excluded all other swine pathogens circulating in pigs. Furthermore, the assay exhibited satisfactory performance in analyzing clinical samples. The data indicate that the newly developed multiplex real-time PCR method can be applied for differential diagnosis of porcine enteric coronaviruses.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Deltacoronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Diarreia/diagnóstico , Diarreia/veterinária , Sensibilidade e Especificidade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia
19.
Virology ; 594: 110062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522136

RESUMO

Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/µL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.


Assuntos
Infecções por Coronavirus , Ácidos Nucleicos , Vírus da Diarreia Epidêmica Suína , Rotavirus , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Recombinases/genética , Doenças dos Suínos/diagnóstico , Sensibilidade e Especificidade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Diarreia/diagnóstico , Diarreia/veterinária
20.
Vet Microbiol ; 292: 110049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493699

RESUMO

Severe acute diarrhea syndrome coronavirus (SADS-CoV) was first detected in Guangdong province of China in 2017. And yet from May 2021 to Jun 2023, there were no SADS-CoV outbreaks. In this study, we reported the recent outbreak of SADS-CoV in China on Jun 2023. Phylogenetic analysis showed the novel strain was derived from the ongoing transmission and evolution of SADS-CoV in China, rather than a separate cross-species transmission from bats. Also, the novel strain was found to participate in a recombant event as a minor parent and a missing base in the genome was discovered indicating an novel evolutionary pathway. Through virulence assays in piglets, we further determined that novel strain (SADS-CoV/HNNY/2023) was a highly virulent SADS-CoV strain with typical clinical symptoms: acute diarrhea, vomiting, rapid weight loss. Therefore, the re-emergence of SADS-CoV strains should be brought to people's attention.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Animais , Suínos , Filogenia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , China/epidemiologia , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...